翻訳と辞書
Words near each other
・ Superior gluteal
・ Superior gluteal artery
・ Superior gluteal nerve
・ Superior gluteal veins
・ Superior good
・ Superior Graduate Schools in Italy
・ Superior High School
・ Superior High School (Montana)
・ Superior High School (Wisconsin)
・ Superior highly composite number
・ Superior Hiking Trail
・ Superior Honor Award
・ Superior hypogastric plexus
・ Superior hypophysial artery
・ Superior Industries
Superintegrable Hamiltonian system
・ Superintelligence
・ Superintendencia Financiera de Colombia
・ Superintendencia Nacional de Administración Tributaria
・ Superintendency of Corporations
・ Superintendency of Industry and Commerce
・ Superintendency of Ports and Transport (Colombia)
・ Superintendency of Residential Public Services (Colombia)
・ Superintendent
・ Superintendent (construction)
・ Superintendent (ecclesiastical)
・ Superintendent (education)
・ Superintendent (jail)
・ Superintendent (New Zealand)
・ Superintendent (police)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Superintegrable Hamiltonian system : ウィキペディア英語版
Superintegrable Hamiltonian system
In mathematics, a superintegrable Hamiltonian system is a Hamiltonian system on a 2''n''-dimensional symplectic manifold for which the following conditions hold:
(i) There exist ''n'' ≤ ''k'' independent integrals ''F'' ''i'' of motion. Their level surfaces (invariant submanifolds) form a fibered manifold F:Z\to N=F(Z) over a connected open subset N\subset\mathbb R^k.
(ii) There exist smooth real functions s_ on N such that the Poisson bracket of integrals of motion reads
\= s_\circ F.
(iii) The matrix function s_ is of constant corank m=2n-k on N.
If k=n, this is the case of a completely integrable Hamiltonian system. The Mishchenko-Fomenko theorem for superintegrable Hamiltonian systems generalizes the Liouville-Arnold theorem on action-angle coordinates of completely integrable Hamiltonian system as follows.
Let invariant submanifolds of a superintegrable Hamiltonian system be connected compact and mutually diffeomorphic. Then the fibered manifold F is a fiber bundle
in tori T^m. Given its fiber M, there exists an open neighbourhood U of M which is a trivial fiber bundle provided with the bundle (generalized action-angle) coordinates (I_A,p_i,q^i, \phi^A),
A=1,\ldots, m, i=1,\ldots,n-m such that (\phi^A) are coordinates on T^m. These coordinates are the Darboux coordinates on a symplectic manifold U. A Hamiltonian of a superintegrable system depends only on the action variables I_A which are the Casimir functions of the coinduced Poisson structure on F(U).
The Liouville-Arnold theorem for completely integrable systems and the Mishchenko-Fomenko theorem for the superintegrable ones are generalized to the case of non-compact invariant submanifolds. They are diffeomorphic to a toroidal cylinder T^\times\mathbb R^r.
== See also ==

*Integrable system
*Action-angle coordinates

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Superintegrable Hamiltonian system」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.